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1.0 INTRODUCTION

The equations presented in this FDM were obtained for use in a pro-
gram designed to investigate the application of optimal control techniques to
the control of a highly elastic launch vehicle. The work was performed for the
George C. Marshall Space Flight Center under Contract NAS8-20067. The
primary aim of the program is the analysis and synthesis of an optimal control
system for controlling the bending modes of an elastic launch vehicle.

The equations of motion for the rigid body, the bending modes, and
engine-actuator dynamics have been simplified to reduce their complexity
without significantly altering the vehicle characteristics in the frequency range
of interest. For the vehicle used in this investigation, there is little coupling
among the roll, pitch, and yaw degrees of freedom because of the structural
and inertial symmetry and because of the relatively small aerodynamic surfaces.
Therefore, the pitch and yaw motions can be investigated separately. Also due
to symmetry, the equations of motion in the yaw plane are the same as the
equations in the pitch plane.

In point-time investigations, the forward velocity is assumed to be con-
stant at the velocity of the nominal trajectory. Hence, there are two degrees
of freedom in the pitch plane: rotation and normal translation. Figures 1 and
2 show the pitch plane with each parameter shown in its positive sense.

The purpose of Sections 2 and 3 is to provide insight to the terms in
the equations, to the simplifications made, and to the vehicle's modes of mo-
tion. Small perturbation equations are used for the control studies. Hence,
only small deviations of pitch angle ( @ ) and angle of attack ( &« ) in the plane
of motion are allowed about the nominal flight trajectory with the stability
derivatives and dynamic pressure assumed constant.

In order to describe the motions of the flexible vehicle, a modal ap-
proach is used. The shape of the deflected vehicle is obtained by the summa-
tion of selected mode shapes. Three assumptions were made in determining
the mode shapes:

1. the liquids in the tanks were considered rigid in the sectional

mass distribution,

2. the engines were rigidly attached with the mass of the engines

lumped at the engine center of gravity body station, and

3. the mode slope is constant aft of the gimbal station.

As shown in Table IV, the mode shapes are normalized to a value of unity at
station 0 and are computed so that there is no elastic or inertial coupling.
However, the flexible modes are aerodynamically coupled and coupled through
the control system.

Finally, Section 4 presents an example of an optimal control technique
as applied to the control of a highly elastic launch vehicle. In this example,
only the first and second bending modes are considered. A performance index
was selected and the closed-loop poles were obtained. Finally, the feedback
control law was computed.

FDM No. 377 1
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2.0 SYSTEM EQUATIONS OF MOTION
2.1 PITCH ACCELERATION EQUATIONS

The pitch acceleration equation about the center of gravity can be de-
rived from Figures 1 and 2. If the torques acting on the vehicle are summed
and then divided by the pitch plane moment of inertia, the following equation
is obtained.

. aACs (%z-% F Elx. -
&+ 3 'hc( ¢ cP) & 4_2 s Y‘ _ <CG ﬂ) Y‘-’
F-X\ mg (%4-% (Y%ea~Yg)Me (¥g-2e)+1g | .,
-4( ) e (Ve e)y/ gy ot | e ) e (Y- Ye) + Ig i
m Ig (%¢) Ig
F-X ne(rg-%g) R’ (%es-%s)
P4 I, + z, B =0

(1)

The above equation assumes that small angle approximations are valid (i.e.,
sin@, =B,, Sinew z @« , etc.). Since there are no large aerodynamic
lifting surfaces, the aerodynamic damping term (p/z,) @ is assumed neg-
ligible and omitted.

The aerodynamic and inertial torques can be easily seen in Figure 1.
Due to bending, the thrust (F) does not act along the % body axis. This
change in the direction of the thrust introduces additional torques which are
shown in Figure 2. From Figure 2, we can sketch the following:

% (Elastic Axis)

/
x (Rigid Body Axis)

Sketch A

FDM No. 377 2



Sketch A shows the thrust in component form with the appropriate moment
arms. Assuming small angle approximations (i.e., sin Y[’{k yU = Yo ) WU
and cos Yo"(,/,) Y; -1), the following torques are obtained: s Yo

*); F %'(x,) 7 *AZ' Fl%es~2g) Yitng %

. When the control engines are being deflected at an angular acceleration,
(3, » about the gimbal pivots, there results an inertial torque ( 471, Be ).

7, =("p' "e)ﬁ.;.

Sketch B

This inertial torque can be transferred to the center of gravity of the vehicle.

In Sketch B, the axial and tangential components of acceleration caused
by gimballing the control engines are shown. The component of force due to
the axial component of acceleration is negligible compared to the total thrust
(F) and therefore it was omitted. The component of force due to the tangential

acceleration is .
4me (g~ %e) By

The pitching moment about the center of gravity of the vehicle due to this
inertial reaction force is

4 (%eq - %ﬁ)me (%5 ’%c)ﬁ';,

The factor 4 is needed for the above two inertial torques because four engines
are gimballed together.

In addition to the above torques, a control torque R’ (%4~ Xg)B, is
generated when 4, # 0 which is easily derived from Figure 1. In addition to
the thrust vectoring torque, a small torque is generated by the shift in the en-
gine mass. This can be derived from Figure 2 or Sketch C.

Assuming that the axial acceleration ('_m—) of the launch vehicle is in-
variant with bending, then the acceleration of the engines is (Em~_¥) . The dis-
placement (moment arm) of the engine center of mass is (%g- %e)sin (,64- Y"'(“) %)
Assuming that small angle approximations are valid, the torque due to engine
displacement is I~

-X
4 Me ( %,s‘%) (.- Y",(x,,) %)

FDM No. 377 3
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Data for computing the coefficients of Equation 1 are tabulated in Tables I, II, IV.

Yy (@lastic axis)

% (rigid body axis)

Sketch C

2.2 ACCELERATION EQUATION IN Z DIRECTION

The acceleration of the center of gravity in the Z direction can be ob-
tained from Figures 1 and 2 by summing the forces in the Z direction and
dividing by the total mass:

2 X g AC 2:2
z:——¢ az-—Z% ﬂL Vzl‘+gsm'(/' (2)
Equation 2 assumes that small angle approximations are valid. The last two
terms of Equation 2 account for the difference between the centrifugal and
gravitational accelerations. Most trajectories are shaped such that the vehicle
flies a gravity turn trajectory (i.e., a zero lift or zero angle of attack tra-
jectory). Therefore, .
. gsiny

Y
and the last two terms of Equation 2 cancel. If this type of a trajectory is not
flown, these two terms should be included.

Since Z will introduce an additional variable into the system of equa-
tions which cannot be measured directly and used in the synthesis of a control
system, it is desirable to eliminate it. This can be done by differentiating,
with respect to time, the angular equation shown in Figure 1 and solving for Z ,

Z=v(p-a) (3)

FDM No. 377 4



) Velocity is constant for a point-time investigation.
into Equation 2, the Z equation becomes

. F-X . chfu F ' R’
@+ "y ¢+M+ Iy, o - mv§\/‘(’ﬂ)7l£+mvﬂ"=0 (4)

— 0 ’
The terms (_E_»"_X ¢) . (_q__A_"'_“ 04), and (i ﬂz.) are easily derived

from Figure 1. The ¢ and & terms were obtained from the Z substitution,

Finally, the bending term (——ZY,’W 771) is easily obtained from Sketch A in
Section 2.1. The data for computmg the coefficients of Equation 4 are tab-

ulated in Tables I, II, and IV.

If Equation 3 is substituted

2.3 BENDING EQUATION

A typical launch vehicle can be represented by a nonuniform free-free
beam with arbitrary mass and stiffness distribution. The loading on the ve-
hicle can be both static and dynamic, and the bending is assumed to be in the
lateral direction only. A free-free beam with arbitrary loading is shown in

Figure 3. The differential relationship between the deflection 4 and the
bending moment M is

927_ M ()

—

ax?  E(T (%) (5)

The load distribution P (%) is equal to

2
Pl = 55 [50] (6)

where S (x)is the shear distribution.

)
Stn)= 5~ [M ()] (7

Hence, Equation 6 can be written as
2

Ply) = [M(2)]

(8)

If M (x) of Equation 5 is substituted into Equation 8, the plane elastic motion
of the beam is described by the resulting partial differential equation

5% %3
32 [E(x)I(%)

dr?

FDM No. 377 5



It is now assumed that the mass of the beam and its elastic properties
can be considered separately. Therefore, the beam will be considered a
massless elastic body with masses attached to it. Also, it is assumed that no
external forces or constraints are acting on the beam (free-free). Since the
beam is moving in free vibration, the beam will be loaded by inertial forces.
Therefore,

92
P(y) = -m(x) =2 (10)
ot ?
and Equation 9 becomes
5% 9?2 22
my =2 (E(fx)I(oc) _2) =0 (11)
922 Sxl on*
where m(x), I(x), and E(x) are functions of x and must always be positive.
The deflection from the undeflected elastic axis is represented by a Fourier
series of normal mode functions:
/2"#(%,L‘) = ; A(’L) 72 (t) (12)
where Y, %) is the normalized displacement at station X, and %; () is the gen-
eralized displacement of the ith mode. Values of YL ) along the vehicle are

tabulated in Table IV for the first four bending modes.

2.3.1 EXTERNAL LOADING

If the vehicle is subjected to external loading, w’(%,¢), then Equation
11 becomes

% I 9’7)
m (% ER)T(x) £ | = w(xt)
TP ( ( Su* )
Now, if Equation 13 is multiplied by Y"(x) , it becomes
927, 3% 92'?).
: I Y, =wt
m (%) ‘) e + ™ [E(w) (%) 9@3} g (%) Y, 2ty (14)
Differentiating Equation 12 with respect to time (t) and x, we get
7 .
% . Y, %
ot (x)
2% . (15)
and it = Y"(‘z) Z
9% 9\’;(,,
% ox ¢
o _ Vi . (ie)
awt 9t

Substituting Equations 15 and 16 into Equation 14 gives

FDM No. 377 6



2.. ¢
m ) [Yio] 7 + P [EW(”) ;,)]Y‘u) 7= WY, (17

Assuming that w(x, t) can be represented in a manner which is similar to Equa-
tion 12, then

w(y,t) = 4? K; (¢) m(w) Y, (18)

where K, (#) 1is an unknown function. Integrating w(%,¢) YL(,”) over the length
(£) of the vehicle, we get

Y.
/ wit) n'(z) dy = Z k) / ” (%) \:'(u)z dx (19)
o ‘ 0

&~

Hence, Ki(t) is found to be

K‘-(t)‘; L‘a’(" '5) l(»z)
2y (20)

m(x) Y;
4 (%)

In References 1, 2 and 3, the numerator of Equation 20 is called the generalized
force, Qi(t)’ and is defined as being

4
@ (2) = /w”(%z‘) Y, 9% (21)

The denominator of Equation 20 is called the generalized mass, 72, , and is
defined ¢

2
m; - /m) Yy 9% (22)
F)
With these two definitions (Equations 21 and 22), the forcing function (Equation
18) can be written as

Q; )

wxt) = Z

é

2
)Y (23)

Now Equation 17 is integrated along the entire length of the vehicle and Equa-
tions 21 and 22 are substituted into the resulting expression. Dividing this ex-
v

pression by ,fm(w) YL? dx , a set of simultaneous bending equations is obtained
in the form ° ¥)

L
r— | B S| R
% n; gf dr? [E(%) () ow? ‘o) o, %: m; @) (24)

where the natural frequency of the ith mode is defined as being

FDM No. 377 7
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@ w ) a [FOT 5 e .

For all practical purposes, there are small dissipative forces in the system.
However, the energy dissipated by these forces is small when compared with
the elastic energy of the system. Therefore, the damping that these dissi-
pative forces provide is very small. Since this damping does exist, it can be
included in Equation 24 as the following shows:

Q,' ¢)
ey

B+ 25, 00,0 0y, = (26)

where the damping ratio must be obtained from experimental data (See Table III).

2.3.2 Generalized Mass

A numerical value for the generalized mass (Equation 22) can be ob-
tained by representing the mass of the system as the sum of a discrete number
of lumped masses at stations along the x body axis of the vehicle. Knowing
Y; (xy » the integration of Equation 22 can be approximated by the following
summation: 2

M =2 Mug) Y"(w (27)

where m(xy) is the lumped mass at station x,. The accuracy of this method
will depend on the number of lumped masses shown. Of course, graphical
integration could be performed and more accurate results obtained. Values
of M, are tabulated in Table III for the first four bending modes.

2.3.3 Generalized Force

The generalized force resulting from external loading on the vehicle
originates from a number of sources; namely,

1. control rocket thrust,

2, inertial forces of the gimballing rocket engines, and

3. aerodynamic forces.

Hence, the generalized force, Qi(t) (Equation 21), is the sum of the
above three sources:

Qut) =Ry )+ Qs y (8] + @rp g, @) (28)

2.3.3.1 Control Rocket Thrust

The thrust of the control rockets is assumed concentrated at the gimbal
point (i.e., station Yg ). With this assumption, the lateral force which will
cause bending is ©'sin 4, . Assuming that sing, ~ 4, (rad), the lateral force
due to the control rocket thrustis ®’ 38, .

Substituting ©’4B, into Equation 21, the generalized force due to the

control rockets, Q;, (¢) , is o'y
. )= g
QL/G U 4(44,/) ﬂl (29)

FDM No. 377 8



Values for R’ and Y;

can be obtained from Tables I and IV respectively
(R = %— F). (y'g)

2.3.3.2 Inertial Forces of Control Rocket Engines

The inertial forces due to gimballing the control rocket engines have
already been obtained in Section 2.1. If this inertial force is substituted into
Equation 21, the following generalized force is obtained:

, .
O‘,a' (¢) = 4[”{9 ('”,a' %e) y"(w +1, yi(,w ]/64 (30)

Qiﬁ (t) can be computed using the data in Tables II and IV.

2.3.3.3 Aerodynamic Forces

The normal force acting on the vehicle is usually given as a local nor-
mal force coefficient distribution (9C4, / 9% ) along its length (see Figure 4).
In order to obtain the total normal force derivative, it is necessary to integrate
with respect to x along the entire length of the vehicle.

£

c
¢ ___/ iz P (31)
% 0 o

For this study, the normal force derivative was obtained by concentrating the
normal force coefficients at certain intervals and solving for C%L as follows:

£ N
2C
C," -.:./ P dy =:Z C?“ (')L”) (32)

o 9” nst

0

where x_. is the station where the local normal force coefficient was concen-
trated. rE\Iow, the normal force due to angle of attack is

N e
E =7 Fo
% ? Aé I

Ay,” & (33)

Substituting Equation 33 into Equation 21, the generalized force due to angle
of attack, @;, (¢), is

_ N 907“
Q (8 =74 g:; o 2¥n ¥ Y‘(x,,) (34)

It should be noted that the following aerodynamic terms have been omitted:

1. the local change in angle of attack due to the bending of the
vehicle,

2. the aerodynamic damping forces due to the angle of attack
changes caused by the following local velocities which are
normal to the aerodynamic velocity vector:

a. rigid body angular velocity

'y‘"'% .
dé:-._(—v_i‘_)a (35)

FDM No. 377 9



b. velocity of beam displacement
-_ 3 ! . (36)
¢'—"'-—=—-—ZY' 7
: L
v VT )
2.4 ENGINE-ACTUATOR EQUATION

The dynamics of the engine and actuator were obtained from Reference
1 and are presented below.

ﬂc Ba ' ENGI/NE /64
ACTUVATOR
DYNAMILS

A detailed block diagram of Sketch D is shown in Figure 5. No numerical values
were given for the expressions shown in Figure 5. However, Figures 6 and 7
were given along with the following equation:

[, + 2374, + 22594, + 31,130, = 31, 150 3, (37)

2.5 BENDING MOMENT EQUATION

There are two methods used to calculate the bending moment at any
station x:

1. mode-displacement method, and
2. mode-acceleration method.

For the mode-displacement method, the equation used in Reference 3 for ob-
taining the bending moment at station x, is

d*y; )
BM(x) = E(v,)I(%,) ), (*n) 7 (38)
¢ d¢”2 ¢

As noted in Reference 3, the mode-displacement method is not accurate when
only a limited number of modes is included and when the mass distribution is
highly discontinuous. Since only the first and second modes are currently be-
ing examined and the mass distribution is highly discontinuous, the mode-
acceleration method is used. In Reference 3, the bending moment at any sta-
tion (x,) using the mode-acceleration method is obtained by summing the mo-
ments from the nose back along the vehicle to station X-

BM (1’1,,) = Z {")ﬂ(ﬂbj)&? ('ZJ) + _q-AO?U(%,J [M +Z. \/il
J

i Loty

/ . .
%" V; Y‘(lj) ‘

’ .
v (ki rea)© -0 (39)

where j = index of stations forward of x,,, i = modal index, and n = station
index.

FDM No. 377 10



Values for the coefficients of Equation 39 can be computed using the data in
Tables I and IV and the data shown in Figures 4 and 8.

2.6 ACCELEROMETER EQUATION

Assuming no instrumentation dynamics (the frequency of the acceler-
ometer dynamics is much higher than the modes of motion), the accelerometer
equation at any station x4 can be easily derived from Figure 2.

= (%g-%5) B + (Q'AG%')OC *Z ;(,z)

Fyr F-X B'
‘; {_”7 “og y"(*o)} it (40)
40

2.7 POSITION AND RATE GYRO EQUATIONS

The equation for a position gyro can be readily derived for any station

2 from Figure 2.
¢PG = ¢zm/o - Z X’

8opy i (vg) % (41)

The equation for the rate gyro (assuming no instrumentation dynamics) can be
obtained by taking the derivative of Equation 41 with respect to time. Hence,

= é - v/ 3 (42).
%’:l/f;' ‘ ‘(‘16¢) 74

FDM No. 377 11



3.0 TRANSFER FUNCTIONS

3.1 RIGID BODY

Using the data from Reference 1 and Equations 1, 4 and 37, the follow-
ing are obtained:

@ - .0733¢ + 000737 &, +.458, = O (1)

3 . 4
~B+.0405P +a+.01067x + .02106 (3, = O (4)

. . 37
Cramer's Rule was used to obtain the following transfer functions:
s 2(.00007) s \?
-2 + —
18 (’ .0/¢/) I:/* 2471 > (24,7/) J
(s) = (42)
Be De
s 2(.5777) s \?
141 - 5 + 43
¢ .. é 4( ! .04042) [’ " 2473 (24.73) J (42)
e
D (44)
/ s ) ). s ;S
A, * 2902/ Zar7 .o¢/7é2
where . (s) = Dg

s s s \/. S 2(.098) s \2
De = (’*.2942){’*/4.44){".24/7)(’ ,04;75) [/* 26.17 5*(¢4.;,) ]

In order to reduce the complexity of the system equations, the following
simplifications were incorporated in Equations 1 and 37. Since the mass and
inertia of the gimballed engines are small when compared with the mass and
inertia of the total vehicle, the coefficient

(%o -2g)me (%g-2e)* L
4[ 6~ %@ ;;y‘ﬂ e e]

was assumed to be zero ("e/m,,.,, = .014 and I, /Iy =55 x 10-6), As are-
sult of this simplification, a pair of zeros at a frequency of 24.7 rad/sec are
discarded. These zeros are commonly called the "tail-wags-dog" zeros and
occur at the frequency at which the inertial forces (discussed in Section 2.1)
resulting from the gimballing of the control engines cancel the component of
thrust normal to the missile axis due to deflection of the engine chambers.
Their effect on the rigid body mode is minor.

The second simplification involves replacing Equation 37 with the fol-
lowing first-order equation:

B+ 1798, =179 fe (45)

FDM No. 377 12



This simplification reduces the order of the system by two. The frequency

of the discarded poles is 46.11 rad/sec. As can be seen from Table III, this
frequency is well above the frequency range of interest. The real pole was
moved from s = -14.64 to s = -17.9 in order to give a better representation of
the magnitude and phase of the engine-actuator dynamics at the lower fre-
quencies (see Figures 6 and 7).

F-Xx Me (ﬁﬂ- Me)
m I
acceleration equation is zero. This assumption is valid because the pitch ac-
celeration due to moving the mass of the engine is negligible when compared
with the pitch acceleration due to the control rockets, i.e.,
! - F-X mg(%s-%
R'(%ea-2g) 5oy 4 e (%6~ Ye)
Zy m Iq

With the above simplifications incorporated into the above equations, the

rigid body system equations are:

The third simplification assumes that 4 in the pitch

.o ‘ 46
B-.0735x +.45 4, =0 (46)
. . 4
~-@+. 0405 G+ L+ 01067 +.02106 G, =0 (4)
. 45
4, +/719/6L =/Z9/@a (45)
The resulting simplified transfer functions are:
S
_i(s) = B (“ .0747) (47)
Pe De
s
o 6.14(/—"04—04)(/-}2:4‘,)
——(s) = 5 (48)
(4 14
S S s
-l -5 )
gb (6) = 2942 1.)24/7 L04173, (49)
c R

where

S s p s /4 s)
De = (“.2942)(’—.24/7){ '.04/75)( 79

Using the data in Table I, the accelerometer equations at the following stations
are:

%¢ =22.7 a, = —fgaé +ﬁ‘.54ac+/0.93,64

F
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%Yy = 41.5 a, = 5.54¢ + 10934,

7
%g = 55,4 g = 139 + 5640 +10.93 4,
g =92.1 Gy = 50,63 +5.540 + 1093,
vg = 122.4 @3 = 8098+ 554 « 10.93 4,

In order to use 2y in the synthesis of the control law (see Reference 4),
it is necessary to make 2, a function of ® and 4, . Therefore, (& can be
replaced with the pitch acCeleration equation (46). Hence,

a, = (%g~%ce)-0733& - . 453,) +5.5¢ 0 + 10.93 4, (50)

Now, at the following stations, the accelerometer equations are:

X = 22.7 2, = 4J6a + 19584,
%g =41.5 Ay = 5.5¢0 + 10934,
%y = 55.4 0, = 6.56a + 4684,
Ly = 92.1 ay = 925 - 11.82 4,
vy =122.4 a, = 11.47a - 25.47 4,

3.2 FIRST AND SECOND BENDING MODES

Substituting the data from Reference 1 into the system equations, the
following are obtained:

B -.07534 -.01067y, - 02197y, +.000737 G, +.453, = 0 (1)
- @+.0405 G+ & +.01067% - 000751, . 0015y, - 001§, -. 002y, +.02106 (G, = O (4)
- 545320 + §, +.02317 ) + 5.37y,- 0I5, ~ 15836, = O (26)

(First Mode)

~2.36@ + 7, +.05642y +31.8y, -.0408, - 22.778, = O (26)
% 72 % ’61' /6‘6 (Second Mode)

B, + 23706, +2259 g, +31,50 4, = 51,1304, (37)
Transforming the above equations into the s-domain and applying Cramer's

Rule, the following transfer functions are obtained:
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s [, 2t000e9) L )z B 2(.0043) S+( s 21
@ -/m(/ ,,,,,,) 2471 { m) * 554z °" 5572 2,231 2231
5 (s) = ) (51)
e B,
s s 20028 [ s [ 2¢13) s 2\ 2(193) s \?
( - + 1+ 5+ ) [+ = S+|{z255] I+ 5+
L 469" aaoi)\"* g9/ " 2278 1178 satz  \$427 || y93¢ " 193¢ ] o,
Be Ds,
s 5 s 2(00543) s |2 2(.00015) ( s )1
%, ”’(”-0403)(’*.4948)(’_.4502) [’* 5639 S (5.559) :\[“ 2421 °t|zaze
Ls): .D (53)
% 7
s 2(.00027) s \I[ . 2(00%3) 5\2 2(.6514) s z]
T2 ”Wé 5555)[’ ‘238 5+{23.34)j " $+/z._51—7”[l' 4289 s+(-4239) |
-ﬁ—(s) D (54)
(] F2
s s s 2(.0048) s |2 2(.0044)
A (’",Mfsg‘)(’*.m)(".zeﬂ [* 5.637 5*{3737):\[7* 2.326 2324 jl
(s)= (55)
Pe Dg,

) * V51 ,+ZCM¢E)S+( s)z s 260044)“( 5 )Z]
where 'DB,_ = (1~ .04/58)/"-3’45) 24! 5637 5,637 2.32 2.32¢6
56)
s 2(.098) (_5_ 2] (
g (/ '14.42) [’* w5 o7 44.;)

The complexity of the system equations with bending modes can be reduced
by incorporating the three simplifications presented in Section 3.1. Also, Z
and the pitch accelerations due to bending are small and have a negligible ef-
fect on the location of the poles and zeros. Hence, the following terms are
considered zero' »

g Flrecora F-X e (tg-%e) , }_
2‘.:‘ Iy Lxrg) I, ‘lxp) m I, ‘(xg)
F ’
. :0
mV Y‘(«a,g)

The engine mass and inertia terms of the generalized forcing function
in the bending equations may be neglected because they are small compared
with the total mass and inertia of the vehicle. Therefore, assume

4
—_— -x,) Y, Ly, }:O
. (’”z/’l‘ﬂ %) “(3g) tie L)

¢

The resulting simplified system equations with the first and second bending
modes are:

G- 07330 +.458, =0 (57)
B+ 0t05p e v 010672 +.02106 B, =O (58)
-54532 + ;}; #0217 7, + 8377, - 16834 =0 (59)
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-2.36 +;z2 *.05642), + 3187, -22.77,4, =0 (60)

8, + 17.9 G, = 179/, (45)

The resulting transfer functions are:

s 2(.005) s 2“: 2(,005) ( s z:]
ﬁ@(s) _ ke (”«014/) [’ E7 *(z.w) I+ 535 ° *5e39
(o4

Dsy, (61)
‘.,4(,_ s)//* s)l:* 2(005) ( )][,* zz.m—)m(‘ . )zJ
L 00¢)\" 2141 23/7 2317, 56359 5439 ‘2
3. (62)
- __Ss 5 (0052
% (s) = 9”8( 0408)(, ~¢543)(,+'4986)[’ 5639 (5639)J (63)
Pe Ds,
s V._°% s 2(.005) s 2

& o) = "’7(".0—¢E)(’ .3/9¢)(’*.3¢9/)[’* 2.37 5*(2.3:7')} s
B T Dy, (64)

.S V,._s s 2(005) s \2 2(.a08) s \2
8, © = (’ .04/75)(’ .24/7)(/*.2942) [“ 2317 5*{2.3/7) jHi/' 5639 s*(:f,ew) J
e 2, — (65)
where

S 5 ) 2(005) s \? 2(.005) ( s )z
B, (= ( /79)( 2942)(’-.24/7)(’—'04/75) [/ F e +(5.és9) ][’ Y23 72317

In order to use a, in the synthesis of a control law which mcludes
72, and % it is necessary to make @ (40) a function of G, 0, a, &,
z’ v Y, s {z s %, » and G . . ¢ can be replaced with the S1mp11f1ed pitch
acceleration equatlon (57). 7, can be obtained from the first bending mode
equation (59), and Vz can be obtained from the second bending mode equation
(60). Hence,

2, =(%g-205)B + 554+ Yien,y %y ~(76- 2105 5;(”))7

; (40)
+ Yz%) 2 - (1osz- 2105y, | )%, + 10.93 8,
where
G = 07334 - 454, (57)
Y, = 545520 - 02317 f, - 5.377, + 1583 G, (59)
%, < 236 -.056825,- 318y +2277, (60)
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Using the data in Table IV, the accelerometer equation is computed for
five stations:

Yy =22.7 2y = 5.0402 @ - 00463 2" 112y, -.05078 7, + 2.809@ +20.507 6,

R
|
n

41.7 a4 = 103§ +.00903% 7, * 1903y, +.0313 3, + [6.786 7, - 7.86/5,
¥g =55.4 @y = 484G +.0/68Y, +5.479 7, +.0268 ], + 13622, - 176183,

*g =92.1 @, = 2779% +. 01158, + 7, +.07786 7, - #5745 1, + 116¢8/G,

Yg 122.4 ay = 232638« -.0468»7; - 14.2077, -.01862y, - 83568 y, + 19.0/6 8,

3.3 FIRST FOUR BENDING MODES

Using the simplifications of Section 3.3, the system equations with
four bending modes are:

23

@-.0733¢ +. 456, =0 (57)
Bt .0005B+& +. 01067, + .02106 B, = O (58)
"5.4592 + 7, + 02317 Y, * 5.377,- 15.83 /5, =0 (59)
-2.360 + g, +.05642 5, + 318y, - 22.774, =0 (60)
-11.80 + Gy 4 .0918 Y, +84.25p - 26254, =0 (66)
1336 + 7, #1255, » 156.2 3, ~4.48/9, =0 (67)

The resulting transfer functions are:

s Y, 2m9) (s Vi, 2n [ s i 2ed .__’_‘[ 2o _Sﬂ
& " -214(/',0,7, /*ms*(z__iﬁ)][’*W“{uwﬂ[’*ms‘(ﬂm) s 5*/!.:‘5) (68)
—_5) =
Ae Dg,
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2As) 2(0s) 2T, 2es) s ZJ{ 2(008) {s z]
o 6"(”7«){’ )" 2o *(zw)J[’ se9 " (5439) ["9./79 5‘(9./79) T rz_;)

(s) =

D
pe 5, 69)
s s s 2(003) s \2 2(00s) s )2 2(.00%) s 2
LIS e (’ .awa)(’ ‘.4543)(’*,4914)[’ * 5639 s*{sm) M’* 5779 ° ‘(9./79) ][’ * 25 St (Tz‘?) ]
——(s) =
ﬂo DB, (70)
.5 2(w3) _ [ s V[, Aw3) 2(445} s z]
T (5 = mé .o«z)( 9){’ ¢ 549/)[’ Y 2 5*(2.3;7) ][ 9.179 mo) I’ 12.5 /zs
fe %, (71)
2as) 2000 s 2][ 2wg) _ ]
kil ) = ! ’7( mr.f( - soze)( 5«7)[ 2317 (zm) ][ 7639 s'(a?s"é) 25 (/.z 5)
¢ (72)
S 2///2) s j[ 2(0e5) /_s_ j[ 2(0s) s z_'l
7 )= '-”‘”(".Fw)[ 2512 ° /25/2 j{ 1+ 2317 (27?) I+ 5439 5* 5639) AT S‘(;Tm)
/60 Dl (73)
s s s 2/w5) 2809) s z‘ 2/00%) 2{m) 52
A 5= (’ '.ﬁﬂ'})(".zm 24/7)[ 237 (2 m) ][ 5;39 5+ we ik ’* 9.179 */9/19) J[’ 2% 3 (m—)}
Le Ds, (74)
where

Do, @ < szl el e > 1o ) Wi o N =)
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4,0 APPLICATION OF OPTIMAL CONTROL THEORY
TO CONTROL A HIGHLY ELASTIC VEHICLE

The technique presented in this section is the same as shown in Ref-
erence 4. Rynaski in Reference 4 denotes that the objective of linear optimal
design is to provide a system that will give a rapid and smooth response to a
disturbance or a command input, guarantee system stability, and increase the
damping of the bending modes.

4.1 PERFORMANCE INDEX AND CLOSED-LOOP POLES

The equations of motion (57, 58, 59, 60, 45) with the first and second
bending modes are rewritten below in first-order form:

.‘T 1 n r—
Fa o { 0 0 0 0 0 0 @ 0
@ 6 { .33 O 0o 0 0 -.45 d 0
& | |-0005 0 -o0107 0 0 o0 0 -.0211 « 0
7, 0o 0 0 0 1 0 o o 1, 0
iz’, | 0 0 545 -537 -.0%3 0 0 1583 )}l 1o fe (75)
i, 00 o 0 o 0o 1t 0 ||| |0 (a-h)
1 0 0 23 0 0 -318 -o%¢ 2277 ||, 0
L/ét_ 0 0 0 0 0 0 0 -17.9 .JH‘_ L_{7.9_
or
1Z'Fjof&)[£ y‘/'/'J& (76)
The performance index chosen is
o0
2 2 2 z
2V = /(q'¢ t 9T vt At )at (77)
4

T'he dynamic variables 7, and z, are included in the performance index be-
cause they are directly associated with the bending mode motion. In Reference

5, the multivariable root square locus expression
- -1
Irem' e [Is-F ] wau1s-F] 6| < 0 (78)
gives the closed-loop poles as a function of the weighting factors ( q, ) of the

performance index,

I is an identity matrix
H is a matrix of numbers that defines the output of the system,

Q is a matrix of weighting factors of the performance index.
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For this problem,

1
H= |o
I_q'
a-= 0
0
r- [1]
and
- {
P.’=',T

In Equation 78,

and

Therefore,

or

0]
2o

1
r c

0 0
0 0 1

0
0 0
9, O
0 QJ

-
H[Is-F] G =

¢'F1s-F1]H" = [,7‘3'5 (-5)

7@ [Is- F’]”H’@//[Is-i-‘}"a =-T

ﬁ (_s)
c

P

S

|

2
Ae
i3
Be

53

Pe

¢

( S)ﬁ

(s)

(s)

7

—1 (-S)

P

0 o
%, O
0 9

Expanding Equation 86, the following is obtained:
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(81)
(82)
(83)
7
/6—:(-5) } (84)
(85)
2 (S)T
fe
l' -
ﬁ (s)
Be ]




i’ .g(s)__aiés)l-_?}._yi(s)_z'_(-s) .Z‘Ei()_(.s)
ro A e r e e r fe e

Therefore Equation 78 is

9, & d 95 7% 7, 9, 7, L3 0
’+—z(5)ﬁc—(-5) - -—(S)ﬁ‘—c(s) ” Z()—Ig—c‘(s) (87)
where
;¢‘ (s) is the pitch angle transfer function (61)
/j: (s) is the first bending mode variable transfer function (63)
% (s) is the second bending mode variable transfer function (64)

To make a root square locus plot, it is desirable to put Equation 87 in root
locus form. First, multiply and divide the third and fourth terms of Equation

87 :
T sty
7 A &,
Hence,
¢3 71 ”/
9, ¢ & 9, + F(S)F ¢-s)
—_— — —_l —_— )___ _ (*3 4 = 0
f+ r G (s)ﬂc(s)+ v /g (5 ﬁc(S) I+ 9: 7, V4 (88)
—= 2 (s)==(-9)
T fBe " fe
Now multiply and divide Equation 88 by
4, 2.9
A A
Hence,
9. % % ¢3 ’Zf 7{
£ —(s)—(s) (-s)
/+3— E@)E-s) o ¥ 2e fo L Fe J’ ’ =0 (89)
/67 Q, _g( )_ (_ qz ”l
r LGe A r ,5 —(S)

In order to obtain the closed-loop poles of the system, three root loci must be
plotted. The first root locus is given by

¥

1 '
14 7%“’7(-5) -0 (90)
q, Ti(e) 22 5)
a2 ,@
Substituting Equations 63 and 64 into Equation 90 yields the following expression:
2 s\, s s 2(0s)
9s (519 (’t,mg)(i,ms)( ‘*.4!986/l [’i 5659 ° (5439) J (91)

qz s S 7('005)
(119* (’- om)(”t,5/94t)(7’f-34‘91)\Ei 2317 ° 33’7) :]
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:I‘he first locus is shown in Figure 9. The maximum damping ratio was ob-
tained at 9;/9, = 0.5. The second locus is given by:

PS5 |
' ié [ K7z 7 Myl :I l:rm‘s from F:3.9 when g‘/ql = .5 J -0 (92}

% “° Ng Ng
where _
Ny N,
Ty Yoy 2 iyt B h
Ae Be / DD
7 7 N, N,
_i(s) _i(_s) - /dy 2 ’lz— 73
/50 Be 3 DD
@ @ Np Ve
—(5) —(5) =K' — =
ﬂO ﬂc D

Hence, Equation 92 is

9% \:(:./7)2+ 0.5(9./3)’]:” 2(.39) +( s )ZJ[“ 2(99) ., (—i)z]
9, (-2.14)% 3.92 3.92 .47 47
s 2(005) _ | s \z:l[ , 2(.005) s :aJ
{“ ,014)[“ 2317 > 2] ' sews ® *(5.439)

The second locus is shown in Figure 10. The roots for a gain 9;/? = 4 are
used for the third locus so that the pole originating from the open-ioop rigid
body pole will be at a frequency that is less than 1 rad/sec. Also, for greater
values of gz/g’ the bending mode damping may not be obtainable.

1+ =0

The third locus describes the closed-loop poles of the optimal system
and is given by

"'[zﬁz’i’_ 2][wu:r /-7'/0‘9=-0]
o T LB g Py gy, 1R e By 10 when oy =+ (93)
D(s) D(-s)

Hence Equation 93 is

9 [0 12, 2 p s \[, 243 (i)zJ[ 2(375) (s)il
Y 71[(2.14) 4(1.17) +'5(9"8)](“,0825)[/'z.47 s+2'47 /¢ T s+ =2

(/* s)(u S \rs == )(1e 5[ 2220 S)Z ft 2('”5)s+(s)2]
79 .2942)( .24/7)(‘.04/75)[' 5639 *(5.639 T3ty T |23

The third locus is shown in Figure 11. From Figure 11, it can be seen
that good damping of the first two bending modes can be obtained using linear
optimal analysis techniques. By observing Figure 11, a desirable level of

damping can be chosen for a value of ¢,/r . For example, choose ¢,/7” =20
and let r = 1. Then

9, =20

42 = 80

9, = 40
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and the performance index becomes

2V = /(20¢Z+80712+ 40%21*,6762)d5 (94)
0

The closed-loop poles are

s\ s 2074 [ 52 2(1) s |2 2(.01) ' $ 12} (95)
Als) = (”.oezs)(’*;m/) [’* 1.09 s+//.o9) ][’*37 s*{ﬁ) }[" 5.64 s+(f~é4) j]

4.2 FEEDBACK GAINS AND OPTIMAL CONTROL LAW

The optimal control law is of the form

“= -k (96)
and the closed-loop optimal system becomes
v =(F-GK)x (97)
and the characteristic equation is
|Is-F+ Gk =0 (98)

where

K = [Kr Ko ks & K KK /(s]

Equation 98 is then

s -1 0 0 0 0 0 0
o s -.0733 0 0 0 0 45
.0405 -1 $+.0107 0 0 0 0 0211
0 0 0 S -1 0 0 0 -
0 0 -5.45 537 5+.0563 0 0 -15.83
0 0 0 0 0 s -1 0
0 0 -2.36 0 0 5.8  s+.0564 -22.17
119K,  17.9K, 129Ky  17.9%,  179¢; 179k, 17.9ky  (s+17.9+179k))

Expanding the above expression and comparing like coefficients of Equation 95
results in the following:

K, = -6.5929 <,
Ky = .01716 K,

3.1998 Ky
. 002555 Ky

-4.6841 Ky
. 00916 K,
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With these feedback gains, the feedback control law becomes

i=-Ky = 659290 + 46841 @ - 31998 -.058693 y,

. , 99
~.01716 5 - 00916, - 002565 ], - 12465, (99)

Of the state variables in the control law (Equation 99), only &, can be mea-
sured directly. Two methods for synthesizing the control law are presented in

Reference 4.
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TABLE I
TRAJECTORY DATA AT t = 80 SECONDS (REFERENCE 1)

F =5,819, 805 kg
X =1227,178 kg
m = 266051.2 kg-sec?/m

§ = 3841 kg/m?
V. =519.3 m/sec
M =1.767

C =

T ren 1767 4.83 1/rad
A =79,5m?

Xep = 53 m
% = 41.5 m

Iy = 252 x 100 kg-m-sec?

TABLE II
ENGINE DATA (REFERENCE 1)

I, = 3456.38 kg-m-sec? (one engine, pitch or yaw)
Me = 925.07 kg-sec’/m (one engine)

Xe =1.33858m

*g = 2.54m

R' =1/2F
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TABLE III
BENDING DATA AT t = 80 SECONDS (REFERENCE 1)

Bending Frequency Damping Generalized Mass
Mode Ratio
(rad/sec) (kg-sec?®/m)
First 2.317 . 005 170, 748.1
Second 5.639 . 005 115,674.3
Third 9.179 . 005 98,114.7
Fourth 12.5 . 005 565, 743.8
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TABLE IV

NORMALIZED DISPLACEMENTS AND SLOPES
AT t = 80 SECONDS (REFERENCE 1)

FDM No,

Location Yy )4 Yo Y5 Y YS Ys Y4
0 m| 1.0 .03563(1.0 .04727 11.0 .0566011.0 .06362
2.54 .92869(,03569| .90509}.04764 | ,88583 .05758] .87095| .0654¢4
454 .85725}.03573| .80950|.04788 | .76990 | .05818| .73864| .06654
6.54 ..78569}.03590| ,71321}.04878 | .65226 .06038{ .60333| .07037
8.54 .71359}.03619] .61403].05033 | .52773 .06397| .45623| .07634
10.54 1. +64096],03642( ,51220(.051428 .39729 .06625} ,29982| ,07961
12.54 .567951.03657| .40870(.05197 | .26381 .06695]| .13990| .07977
14, 54 .494931.03643] ,30541|.05118 | .13163 .06498-,01645] .07625
16. 54 .42230}.,03619| ,20423|,04995 | .00446 .06207{-,16423| ,07133
18.54 .35020/.03590{ ,10583|.04839 |-.11612 | .05840{~-.30095] .06519
20.54 .27818'.03626 .00796}.05016 |-,23514 | ,06215{~-.43455] .07078
22, 54 .20636}.03554|~,08870|.,04641 -,35094 | .05346{~.56208] ,05644
24. 54 .13608].03472|-,17730| .04208 |-.44804 | .04330|-.65878| .03952
26.54 .06905|.03317 | -.24862| .03349 |-.50418 | .02215|-.68654| .00267
28.54 .00317.03270|-.31244|.03026 }-.53929 | .01288|-.67400]-.01522
30.54 -.06168].03214{-.36944],02669 [-,55543 | ,00324(-,62599|~-.03265
32. 54 -.12534],03150| -.41899} .02283 |-,55221 |-.00643|-.54436|-.04869
a5y | --18764].03079|-.46063|,01878 |-,52993 |-.01577|-.43279|-.06248
36.5U ~.24844] .,03002]-,49416].01495 |-,48992 }-.02353|-,29691|~,07223
38.54 -.30776].02929|~,52120|.01210 |-.43829 |-,02800{~-.14774}-,07670
40.5Uu -.36556}.02851|~-,542581.00929 |-,37832 |-.37832|-,00882|-,07962
sa.se | -.42176] .02768-.55838|.00652 |-.31121 |-.03513| .16969]-.08101
w5y | -.47627].02682|-.56867].00379 |-.23820 |-.03779] .33177|-.0808¢4
46.54 -.52900| .02591|~,57356( ,00111 }|-,16048 |-.03983| ,49199|-.07914
377 28




TABLE IV (CONTINUED)

Location Y, Y Y, YS Y= Y5 Y, Y4
ug.54 -.58057]) ,02518}~,57065}-.00443]-,06234]-.05526{ ..68639]-.10592
50.54 |[-,62880| ,02303{-.55620{-,01001} .05015(~-.05702 .88844(-,09562
52,54 [-.67258] .02055{-.53078{~,01504) ,16377|-.05317| 1.06395|-.07167
54,54 |-.71176] ,01863}-.49622|-,01950} .26953|-,05242| 1.19367}-.05759
56.54 -.74704] ,01662|-,45282|~,02389| .37264|-,05051] 1,29210{-.04040
58. 54 ~.77778] .01403]-,39924|-.02985| .46701}-,04300] 1,33109| .00517
60.54 |-.80310] ,01128}-,33364]-,03566( .54309)-,03284] 1,26940} .05629
62. 54 -.82290f ,00852|~,25705{~.04082| .59754|~-.02146] 1,10849]| ,10381
6i.54 -.83757] ,00623}-,17121)-,04471} ,63371]-~,01549 .87274} ,12800
66.54 -.84787| .00409{~-.07861]-,04783] .65986|-.01067 .59997( .14430
68.54 -.85393] ,00198{ .01983]-,05054] .67642}-,00590 .29760| ,15759
70.54 -.85583)-.00008| .12327]|-.05283| .68350|-,00120{ -.02828| .16779
72.54 -,85363}-.00210{ ,23087]~-.05471] .68132{ .00336| -.37143| .17487
74.54 | -,84744]-,00408| .34181}-.05617| .67018| ,00775{ -.72561| ,17882
76.54 [-,83736]-.00600] .45525)~-,05721] .65045} ,01194)-1,08458] ,17568
78.54. |-.82348}-,00787| .57039{-.05786| .62257| ,01590|-1.44224] ,17752
80.54 }-,80264|-.01319} ,70000}-.06906] .57488} ,03104]-1.87573| .23626
82.54 ~.77166}-,01776| .83839)-,06921| ,50475] .03892}-2,33486| ,22220
84,54 =.73244]-,02155] .97139}-,06402} .42347} ,04265)-2,73004} ,174169
86. 54 -.68494]-,02606|1,09510{-,05962| .33302| .04791|-3.03430{ .12935
88.54 -.62770}-,03133}1,20939)-.05441) ,23130] ,05398|~3,24263] ,07633
90.54 -.558901-.03751{1.31055|-.04666| .11574] ,06161]-3,31212|-,00799
92.54% ~-.47783}-,04351}1,39530]-.03796|-,01385} .06767|-3,20899]-.09493
94.54 -.38513|-.04911}1,46270{-,02997|-.15363| ,07192}-2,94327|~.16361
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TABLE IV (CONCLUDED)

Ibcation| Y, Y Yo YL Y5 YS Y, YY
96.54 | -.28164{-,05433| 1.51575(-,02306| -.30064| ,07486] -2,56652]|-.21212
98.54 | -,16803[-,05923| 1,55482|-.01599| ~.45211] .07638| -2.09945|-,25385
100.54 | -.,04495]|-.06380| 1,57966|-.00884| -.60522] .07651| -1.55606]~.28839
102.54 | ,08697)-.06806{ 1,59013|-.00163| -.75723| -,07529| -.95108|-.31539
fOW. 54 | .22707}-.07199{ 1.58619 .00557| -.90550| .07278| -.29982|-.33464
106. 54 .37471|-,07560{ 1.56788| .01272{-1.04751} .06905| ,38205|-.34600
108.54 | .53020|-,08271| 1,53464| ,02269{-1.18311| .07299| 1.09672|-.42140
110.5% | .73093|-.09089| 1.47034| .04143|-1,31345| ,05716| 1.93131|-,41047
112,54 .89320|-.09823| 1,36944] ,05939[-1.41034| .03933| 2.72556|-.38067
1454 | 1,09628|-.10472| 1.23315| .07681|-1.46905| .01901{ 3.44045]-,33117
116.54 | 1,31126|-.10988| 1.06147| .09601|-1.48083|-.01204| &.01787{-.22122
118.54 | 1,53502|-.11403| ..84921| .11487{-1.41705|-.04725| 4.29693|-.07974
120.54 | 1.76733|-.11818] ..60480|..12927|-1.29939]-.07015| 4.37131| .00520
122,54 | 2.00746|-.12191] .33288] .14253[-1.13723|-,09189| 4.27669| .08937
124,54 | 2,25505|-.12577| .03420| .15654.-.93050(-.11559| 4.00599] .18430
126.54 | 2,51150|-.13091| -.29672| .17549| -.66896{-.14838] 3,51170| .32192
128.54 | 2.77820{-.13557| -.66796] ,19499| -.33290{-.18655| 2.68403| .50219
130.54 | 3.05285}-.13888|-1,07344{ .20977| ..07211{-.21725| 1.52149| ,65557
132,54 | 3.33294|-.14106|-1,50403| .22016] .53069|-.24010| .08470| .77567
134.54 | 3.61652{-.14251|-1.95169| .22728] 1.02756|-.25607| -1.55685| .86125
136.54 | 3.90255|-.14342|-2.41118| .23177| 1.55078{-.26621] .-3.33877| .81591
138.54 | 4.18980|-.14376|-2.87695] .23363]| 2.08852{-.27072] -5.20052| .94156
140.54 | 4.47723|-.14358|-3.34409] .23305| 2.63014|-.26988| -7.08634| .93886
142,54 | 4.76411|-.14333]|-3,80895| .23199| 3.16740]-.26773| -8.95187| .92335
I44. 54 | 5.05052|~.14306{-4.27173| .23065| 3.70022{-,26476]-10,.79460| ,91249
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Figure 5 Block Diagram of Engine-Actuator System

4,2, 4)

G - ko + K, M, M,
s? + fﬁ S + “‘_—‘_‘—KL <
M, (K, + k)M,
L
o O M,
L ﬂA ) sz + ﬁ S + —/{-‘-‘—
My, M,
K35 = valve pressure feedback gain
K, = open-loop gain
kK, = effective hydraulic spring constant
¥, = effective load spring constant
M, = effective load mass
B, = real damping at gimbal
ﬂc = actuator command
ﬂA = actuator output
@B, = control engine gimbal angle

(Taken from Reference 1)
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